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Abstract. The dynamical correlations of a model consisting of particles constrained on the line and inter-
acting with a nearest-neighbour Lennard-Jones potential are computed by molecular-dynamics simulations.
A drastic qualitative change of the spectral shape, from a phonon-like to a diffusive form, is observed upon
reducing the particle density even ad moderate temperatures. The latter scenario is due to the spontaneous
fragmentation of the crystal-like structure into an ensemble of “clusters” colliding among themselves. In
both cases, the spectral linewidths do not follow the usual q2 behaviour for small wavenumbers q, thus
signalling a breakdown of linearized hydrodynamics. This anomaly is traced back by the presence of cor-
relations due to the reduced dimensionality.

PACS. 05.60.-k Transport processes – 66.10.Cb Diffusion and thermal diffusion

1 Introduction

Relaxation and transport phenomena in reduced spa-
tial dimension (D < 3) are often qualitatively different
from their three-dimensional counterparts. For concrete-
ness, imagine a large set of impenetrable spheres confined
within a narrow channel. If the mutual passage of particles
is forbidden, the motion of the spheres is necessarily cor-
related, even at long times, because the displacement of
a given particle over a long distance necessitates the mo-
tion of many other particles in the same direction. This is
a documented effect, for example, in single-filing systems
where particle diffusion does not follow Fick’s law [1,2].
Another related instance is the enhancement of vibrational
energy transmission in quasi-1D systems like polymers [3]
or individual carbon nanotubes [4].

The distinguished signature of those effects is in the
long-time behavior of the associated correlation func-
tions [5]. As it is known, the latter may display long-time
tails leading to ill-defined transport coefficients or, more
generally, to the breakdown of customary hydrodynamics.
Indeed, power-law decay of correlations is expected to be a
generic feature of one-dimensional systems in presence of
conservation laws [6]. One important consequence of such
long-ranged correlations is that physical properties may
significantly depend on the system size and that the ther-
modynamic and infinite-time limits may not commute. For
instance, the tagged-particle diffusion coefficient in D = 1,
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that is finite for the infinite system is found instead to van-
ish for a finite one (see [7] and references therein). Another
example is the divergence of the thermal conductivity co-
efficient with the length observed in chains of anharmonic
oscillators [8,9] and hard-points gas [10]. The same type
of anomaly has been detected also for a quasi-1D model
consisting of spheres confined in a narrow channel [11].

Computer simulations of simple toy models is an
invaluable way of attacking those problems. In partic-
ular, one would like to understand the conditions un-
der which those anomalies occur and possibly to classify
the possible universal features. In this paper we con-
sider a simple model of point particles constrained
on the line and interacting with their nearest neigh-
bours through a Lennard-Jones force. This type of phe-
nomenological interaction has been throughly studied for
decades by molecular-dynamics methods [12]. However its
one-dimensional version has received little attention so far.
Previous studies focused on anharmonic effects [13,14] and
transport properties [15]. In this respect, some evidence
that the energy current autocorrelation (the Green-Kubo
integrand) shows a long-time tail of the above mentioned
type has been provided too [16]. The same system has
been also proposed as a toy model to describe fracture
nucleation [17,18].

Of particular relevance in what follows is the work of
Bishop and collaborators [19,20]. At variance with our
model, they considered the case in which the interaction
is extended to all particle pairs. They noticed that the life-
time of long-wavelength fluctuations does not scale with
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their wavenumber q as q−2, as expected from standard
hydrodynamics, but rather as a nontrivial power q−µ. We
anticipate that the results presented henceforth are qual-
itatively consistent with theirs. However, the estimate of
the exponent µ = 1/3 given in reference [20] is signifi-
cantly different from the value found here, µ � 1.5, which
is consistent with previous measurements in chains of cou-
pled oscillators [21,22]. This issue is relevant especially for
assessments about the universality of the scaling laws.

The present paper is organized as follows. In Section 2
we define the model and its physical parameters. Section 3
is devoted to a discussion of the nature of the ground
state at zero temperature. This is important to understand
the effect of density changes on the system dynamics. In
Section 4 we present our simulation results and show how
the low-density properties are related to the kinetics of
particle clusters. Finally, we summarize our results in the
concluding section.

2 The model

We consider an array of N point-like identical atoms or-
dered along a line. The position of the nth atom is de-
noted with xn. By fixing the mass, without loss of gen-
erality, equal to unity and assuming that interactions are
restricted to nearest-neighbour pairs, the equations of mo-
tion write

ẍn = −Fn + Fn−1; Fn = −V ′(xn+1 − xn), (1)

where V ′(z) is a shorthand notation for the first derivative
of the the interparticle potential V with respect to z. The
particles are confined in a simulation “box” of length L
with periodic boundary conditions

xn+N = xn + L. (2)

Accordingly, the particle density d = N/L is a state vari-
able to be considered together with the specific energy
(energy per particle) that will be denoted by e.

In the present work we focus on the Lennard-Jones
potential that in our units reads

V (z) =
1
12

(
1

z12
− 2

z6
+ 1

)
. (3)

For computational purposes, the coupling parameters
have been fixed in such a way as to yield the simplest
form for the force. With this choice , V has a minimum in
z = 1 and the resulting dissociation energy is V0 = 1/12.
Notice that for convenience we set the zero of the poten-
tial energy in z = 1. The presence of the repulsive term in
one dimension ensures that the ordering is preserved (the
particles do not cross each other).

Before closing this section, let us recall that most pre-
vious studies [15,16,19,20] dealt with the case in which
the interaction is not restricted to nearest neighbours but
rather extends all particle pairs. In practice, as pointed
out in references [19,20], even in this case the interaction

is limited to about 2-3 neighbours. Therefore, we do not
expect that the results reported below will be significantly
altered when taking into account the interaction among all
pairs.

3 The ground state at T = 0

In order to understand the physical features of the model
let us briefly discuss its equilibrium properties. Since the
system is one dimensional with only nearest-neighbour
and short-ranged interaction, no actual phase transition
at finite temperature, T > 0, can occur. Nevertheless,
we will see that the dynamics of collective modes may
strongly depend on the state variables. Therefore, even if
it is not legitimate to speak of “phases” in a strict thermo-
dynamic sense, it is sensible to distinguish between regions
where the dynamics is qualitatively different.

Let us start discussing the equilibrium configurations
at T = 0 as a function of the particle density d. This issue,
which is important for the choice of the initial conditions
in microcanonical simulations (see below), has been dis-
cussed in reference [23] for the Lennard-Jones chain where
the pair interaction is among all particles. In view of the
short-range nature of the potential we do not find signi-
ficative difference with the case at hand here. For conve-
nience, we summarize the main results in Figure 1. Three
density regimes are distinguished:
– For d ≥ 1 the ground state consists of equally spaced

particles at a relative distance a = 1/d (homogeneous
solution). The chain is under compression and the total
energy decreases upon decreasing d up to the minimum
value which is attained for d = 1.

– For d∗ < d < 1 the homogeneous solution (chain un-
der tension) becomes a relative minimum. The ground
state consists of equally spaced particles ad a distance
approximatively a ≈ 1 except for a couple which lies
at a large distance. In other words, the minimal en-
ergy configuration is attained by breaking the chain
at one bond. At the critical value d = d∗ =
6

√
7
13 = 0.901971 . . ., the homogeneous configuration

undergoes an instability and disappears.
– For d < d∗ the broken chain state is the unique mini-

mal energy configuration.
Notice that for d < 1 the ground-state energy is basically
0 up to terms O(1/N) since only a couple of particles out
of N sits at a distance which is significantly larger than
1. Furthermore, as noted in reference [23], further frag-
mentation in two or more shorter chains cannot produce
further energy minima.

The phase diagram of Figure 1 suggests a first-order
phase transition at d = 1 where the second derivative of
the energy density with respect to d undergoes a jump
discontinuity. As this quantity should be proportional to
the Young’s modulus this physically means that the chain
undergoes a fracture and looses its elastic tension.

At finite temperature we expect that these features
should be washed out but, as observed for other mod-
els [24], the remnants of the transition should somehow
manifest themselves in the dynamics.
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Fig. 1. The T = 0 minimal-energy configurations of the
Lennard-Jones chain as a function of the particle density.

4 Dynamical correlations

We have performed equilibrium microcanonical simula-
tions by integrating equations (1) (with periodic bound-
ary conditions (2)) by means of a fourth-order symplectic
algorithm [25]. For the different values of density consid-
ered henceforth, initial conditions were chosen to be in
the ground state described in the previous section. The
initial velocities were drawn at random from a Gaussian
distribution and rescaled by suitable factors to assign the
kinetic energy to the desired value and to set the total
initial momentum equal to zero. A suitable transient is
elapsed before acquisition of statistical averages. Conser-
vation of energy and momentum was monitored during
each run. This check is particularly crucial at high en-
ergies/densities where the strongly repulsive part of the
force comes into play and may lead to significant inaccu-
racies. The chosen time-step (0.005–0.05) ensures energy
conservation up to a few parts per million in the worst
case.

We computed the dynamical structure factor, namely
the square modulus of temporal Fourier transform of the
particle density

ρ(q, t) =
1
N

∑
n

exp(−iqxn), (4)

which is defined as

S(q, ω) =
〈∣∣ρ(q, ω)

∣∣2〉. (5)

The square brackets denote an average over a set of inde-
pendent molecular-dynamics runs. By virtue of the peri-
odic boundaries, the allowed values of the wavenumber q
are integer multiples of 2π/L. The reliability of the spectra
has been checked against different choices of the run dura-
tions and sampling times. In some particular cases we also
verified that the results are not affected by data window-
ing that, in principle, may affect the measured linewidths.

4.1 The d = 1 case

In this case we expect a “lattice-like” behaviour with each
particle oscillating around its equilibrium positions. In

Fig. 2. Structure factors for d = 1, N = 8192 and different
qs corresponding to indices k = 1, 2, 4, 8 in equation (6) (left
to right). Microcanonical simulations are performed for the en-
ergy densities e = 0.02 (a) and e = 0.2 (b). The spectra are
averaged over an ensemble of about 100 initial conditions.

other words, we can introduce the change of coordinates
xn = un + na where a = 1/d is the constant lattice spac-
ing. The computation of S(q, ω) can be more conveniently
performed by resorting to the collective coordinates

U(q) =
1√
N

N∑
n=1

un exp(−iqn) q =
2πk

Na
(6)

for k being an integer comprised between −N/2 + 1 and
N/2. This latter expression is computationally more effi-
cient than the definition (4). In fact, standard Fast Fourier
Transform routine can be used to evaluate U(q) (provided
that N is a power of 2). On the other hand, by expand-
ing to the leading order in q, it is seen that the structure
function (5) is proportional to q2〈|U(q)|2〉. We checked nu-
merically that this approximation is very accurate in the
range of q values considered henceforth.

In Figure 2 we report two representative data sets for
low (e = 0.02) and high energies (e = 0.2) compared with
the well depth. The most distinguished feature of the spec-
tra is a narrow phonon peak. For the low energy case, its
frequency Ω agrees with the one computed by the har-
monic approximation of the Lennard-Jones potential:

Ω(q) = 2
√

V ′′(1)
∣∣ sin

qa

2

∣∣. (7)

Indeed, the estimated sound speed c = 2.77± 0.06 is only
slightly larger the value obtained from this latter expres-
sion (c =

√
6 ≈ 2.49...). This indicated that nonlinear
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terms are weak in this energy range. At higher energies,
the particles are less sensitive to the bottom part of the
potential well and the phonon peaks shifts to higher fre-
quency. The data in Figure 2b correspond to e = 0.2,
more than 20 times the well depth; comparing the values
of Figure 2a it can be ascertained that the frequencies are
roughly 50 % larger than in the previous case.

For small enough wavenumbers, besides the phonon
peak, a small zero-frequency component appears whose
relative weight increases at larger energies (see again
Fig. 2). This feature, that has not been reported in pre-
vious works on the Lennard-Jones chain [13], is reminis-
cent of the well-known triplet structure observed in fluids
where a central Rayleigh peak is accompanied by two nar-
row Brillouin lines placed at ±cq [26]. Moreover, according
to the standard hydrodynamic theory, the ratio of the ar-
eas under half the Rayleigh peak and one Brillouin peak
is Cp/CV − 1. On the other hand, the specific heats ratio
is expected to be very close to unity for a “crystal-like”
structure as the one we are facing in our simulation. This
is thus consistent with the intuitive idea that a sizeable
central component should occur only when the systems is
“fluid enough” i.e. when fluctuations of the particles’ po-
sitions are large. This is expected for large temperatures
and/or small densities1. In the next section we will see
that this expectation is further confirmed by the simula-
tions.

In Figure 3 we report the linewidths of the Brillouin
peaks as a function of the wavenumber q and for the two
energy values chosen above. The data reported there corre-
spond to those wavenumbers for which the linewithds are
small enough with respect to the peak frequency (typically
less the one tenth) to allow for a meaningful estimate. The
linewidths are computed by evaluating the frequencies at
which the spectrum is one half of its maximal value. In the
cases in which the spectral resolution is not high enough
we used by a Lorenzian fit to improve the accuracy. In-
cidentally, we noticed that the fitting is reasonably good
only in the peak region while substantial deviations on the
tails are observed.

Remarkably, the linewidths do not scale as q2 as ex-
pected from standard hydrodynamics but rather as qµ. For
e = 0.02 our best-fit estimate is µ = 1.47±0.05. To better
appreciate the reliability of this value, in the inset of Fig-
ure 3 we report the logarithmic derivative of the data that
show a plateau around 1.5. The data for e = 0.2 are in-
stead less conclusive. Although a power law fit still yields
a comparable value (µ = 1.41 ± 0.07) the plot displays a
residual curvature that indicate some relevant subleading
corrections.

1 The existence of a central component also means that there
is a coupling between density and energy fluctuations which are
the hydrodynamic fields of our model. To support this inter-
pretation we computed also the spectra of the local energy field
in some cases. They do display a similar structure with a large
component at the phonon frequency.

Fig. 3. The linewidths of the phonon peak for d = 1, e = 0.02
and e = 0.2. Error bars are reported only when significantly
larger than the symbols. The inset shows the logarithmic
derivative evaluated by finite differences.

Fig. 4. The evolution of the particle density for d = 0.8,
N = 512 and e = 0.02. Along the horizontal direction a black
pixel is drawn at each particle location. Time increases down-
wards.

4.2 The d < 1 case

At finite temperature, when the density is lowered be-
low d = 1, the periodic ground state destabilizes and
this leads to a completely different dynamics. To avoid
the additional features connected with the presence of
the metastable branch (see Fig. 1) we consider the case
d < d∗. Figure 4 shows the evolution of the particle
density field starting from the minimal-energy configu-
ration for d = 0.8. After a transient, the system spon-
taneously fragments in a series of clusters of different
lengths. Within each cluster, the particles are separated
by an average distance equal to the equilibrium distance
of the Lennard-Jones potential (1 in our units). The re-
laxation is thus ruled by the clusters’ kinetics. The latter
consists of two different processes, fragmentation and col-
lisions whose characteristic times we denote by τF and τC

respectively. Let us start giving an estimate of the average
number m of particles in each cluster. For convenience, we
write m = 1/f where f is the average fraction of broken
bonds. The average time between collisions is given by
the ratio between the typical clusters’ separation and the
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Fig. 5. The average fraction of broken bonds f as a function
of the inverse kinetic temperature β; (a) dependence of f on
the number of particles N for fixed density d = 0.5; (b) check
of the formula (10) for fixed N = 256.

typical speed v. A straightforward calculation yields

τC =
1
vf

(1
d
− 1

)
(8)

(remember that the equilibrium distance is 1 in our units).
On the other hand, we expect fragmentation to be a ther-
mally activated process with an activation energy equal
to the well depth V0. Accordingly,

τF = τf exp βV0, (9)

where τ is a suitable prefactor setting the typical “attempt
time” for the process and β is the inverse temperature.
The condition for kinetic equilibrium is obtained by letting
τC = τF ,

f =

√
1 − d

τvd
exp

(
− βV0

2

)
. (10)

Notice that, as a consequence of this estimate, the charac-
teristic time is proportional to

√
1/d − 1 exp(βV0/2) and

that thermalization may become very slow for low tem-
peratures and densities.

This prediction is in fairly good agreement with the
numerical data (Fig. 5). There, we plot the average frac-
tion of broken bonds f as a function of the inverse kinetic
temperature. The quantity f is measured by counting at

Fig. 6. Structure factors for d = 0.8 and different qs
q = 7.67 × 10−4, 1.53 × 10−3, 3.07 × 10−3, 6.13 × 10−3 corre-
sponding to indices k = 1, 2, 4, 8 in equation (6) (left to right).
Microcanonical simulations are performed for the energy den-
sities e = 0.02, N = 1024 (a) and e = 0.2, N = 4096 (b). The
spectra are averaged over an ensemble of about 500 and 100
initial conditions respectively.

each time the number of pairs whose distance is larger
than some prescribed threshold that we fixed equal to 1.5
(some 50% above the inflection point of the Lennard-Jones
potential). From the above discussion, it is clear that the
choice of well-thermalized initial conditions is crucial. In-
deed we found that the time to reach the equilibrium value
of f increases (about linearly) with the number of parti-
cles. In Figure 5a it is shown that f is an extensive param-
eter whose equilibrium value can be evaluated already for
systems of a few hundred particles. In Figure 5b we check
that the scaling behaviour predicted by the kinetic argu-
ment reported above is in agreement with the simulation
data. Notice in particular that the factor 1/2 in the ex-
ponential term is very well accounted for by the data and
that the prefactors display a rather weak dependence on
β.

In view of the above dynamical features, we expect
that the the spectra of density fluctuations should be qual-
itatively different from the d = 1 case. This is confirmed
by the simulation reported in Figures 6 (in this low-density
regime we use the definition (5) of S(q, ω)). Indeed, even
at low energies, a large central component appears which
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Fig. 7. The linewidths of the central peak for d = 0.8 and
e = 0.02. Error bars are reported only when significantly larger
than the symbols.

we associate with the diffusive behaviour of the clusters.
The secondary Brillouin peaks occur only for small enough
wavenumbers and are weaker: for the smallest wavenum-
ber shown in Figure 6 the secondary peak has about 40%
spectral power of the central component. This observation
is consistent with the intuitive expectation that at lower
densities the system should respond like a fluid.

The behavior for e = 0.2 is shown in Figure 6b. The
structure factor is qualitatively similar to the case of Fig-
ure 2b. This is expected, since in the high energy limit
the model approaches the case of hard points colliding
elastically. It is thus plausible that the dynamics is prac-
tically independent on the particle density. Notice also
that in this limit the model becomes an almost-integrable
dynamical system and some pathological behaviour (e.g.
slow thermalization) may be expected.

In analogy with the case d = 1 we analysed the de-
pendence of the spectral linewidths on the wavenumber,
considering only those q values that correspond to narrow
enough lines. Figure 7 shows the half-widths of the central
(Rayleigh) peak as a function of the wavenumber q for the
e = 0.02. In the accessible range we find again a nontrivial
scaling qµ with µ = 1.60 ± 0.05.

5 Conclusions

Our numerical analysis of the one-dimensional Lennard-
Jones system has shown that long-ranged correlations in-
duced by the reduced spatial dimensionality may signif-
icantly affect the density fluctuations. The most striking
feature is the anomalous scaling of the Rayleigh and Bril-
louin peak widths in the hydrodynamic limit, q → 0. The
physical meaning of this behaviour is understood by re-
calling that, in the standard framework, the linewidths
are connected to transport coefficients [26]. For instance
the width of the Brillouin peak is Γq2 where Γ is the
sound attenuation constant. The anomalous scaling can
be recasted in terms of a wavenumber-dependent constant
Γ (q) ∼ qµ−2. Since our simulations clearly indicate that
µ < 2, this implies that Γ diverges in the q → 0 limit.

In other words, a long-wavelength disturbance is damped
on a typical distance which becomes very large. In some
sense, one may think of this as a superdiffusive process, in-
termediate between standard diffusive and ballistic prop-
agation. Our result is thus closely related to the analysis
performed in reference [27] for the hard-point gas.

This feature has been previously observed also in other
one-dimensional lattice models [21,22]. A similar anoma-
lous behaviour of the viscosity of a 1D lattice gas has also
been reported in reference [28]. However, the exponent µ
found in the present work is about 10% smaller then those
measured in references [21,22] (1.5 against 1.67). Remark-
ably, both values are very close to theoretical estimates
presented previously in the literature. Ernst [29] claimed
that µ = 5/3, while the more refined mode-coupling anal-
ysis by Wang and Li [30] gave µ = 3/2 for the specific
model they considered. We anticipate that this latter value
is actually supported by numerical solution of the mode-
coupling equations [31] that, according to reference [14],
should describe the dynamical properties of our model.
This estimate is in excellent agreement with the data re-
ported above. Whether the small differences in the expo-
nents are due to numerical errors and subleading correc-
tions or they indicate the existence of two different “uni-
versality classes” is still an open question.

For d = 1 the system retains the dynamical features
of a one-dimensional crystal. Of course, by virtue of the
short-ranged interactions, the model cannot have a gen-
uine solid phase (Landau-Peierls instability). Nonetheless,
we have found that for a finite system we can still reason
in terms of an effective phonon dispersion and damping.
In the low-density region (d < 1) we have shown how the
relevant time scales are instead dictated by the collision
and recombination processes of one-dimensional “clusters”
of particles. Such processes may lead to a remarkable in-
crease of the thermalization times when the kinetic tem-
perature becomes smaller than the binding energy (see
Eqs. (9 and 10)).

In the present study we limited ourselves to the case in
which the system is initialized close to the ground state.
It would be interesting to examine the relaxation from the
metastable state which exists for d∗ < d < 1. In this re-
spect there is a connection with the work of Oliveira [18]
that studied the fracture nucleation in the same model. At
variance with what discussed here, he starts from the uni-
formly stretched chain, namely from the metastable state
illustrated in the phase diagram of Figure 1. He founds
that the breaking time is orders of magnitude longer than
what expected from Kramers-type estimate. This is pre-
sumably to be traced back to subtle long-ranged correla-
tions of the very same type studied here.

To conclude, we wish to mention the fact that the
anomalous scaling may manifest also at the level of en-
ergy transport in this model. Indeed, nonequilibrium sim-
ulations show that the thermal conductivity coefficient
diverges with the system length also in the low-density
regime [32]. This is a further evidence that nonequilib-
rium processes in one dimension are peculiar and deserve
a special attention.
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